Computational Complexity of Classical Problems for Hereditary Clique-helly Graphs
نویسندگان
چکیده
A graph is clique-Helly when its cliques satisfy the Helly property. A graph is hereditary clique-Helly when every induced subgraph of it is clique-Helly. The decision problems associated to the stability, chromatic, clique and clique-covering numbers are NP-complete for clique-Helly graphs. In this note, we analyze the complexity of these problems for hereditary clique-Helly graphs. Some of them can be deduced easily by known results. We prove that the clique-covering problem remains NP-complete for hereditary clique-Helly graphs. Furthermore, the decision problems associated to the clique-transversal and the clique-independence numbers are analyzed too. We prove that they remain NP-complete for a smaller class: hereditary clique-Helly split graphs.
منابع مشابه
On the strong p-Helly property
The notion of strong p-Helly hypergraphs was introduced by Golumbic and Jamison in 1985 [M.C. Golumbic, R.E. Jamison, The edge intersection graphs of paths in a tree, J. Combin. Theory Ser. B 38 (1985) 8–22]. Independently, other authors [A. Bretto, S. Ubéda, J. Žerovnik, A polynomial algorithm for the strong Helly property. Inform. Process. Lett. 81 (2002) 55–57, E. Prisner, Hereditary clique-...
متن کاملOn Hereditary Helly Classes of Graphs
In graph theory, the Helly property has been applied to families of sets, such as cliques, disks, bicliques, and neighbourhoods, leading to the classes of clique-Helly, disk-Helly, biclique-Helly, neighbourhood-Helly graphs, respectively. A natural question is to determine for which graphs the corresponding Helly property holds, for every induced subgraph. This leads to the corresponding classe...
متن کاملFaster recognition of clique-Helly and hereditary clique-Helly graphs
A family of subsets of a set is Helly when every subfamily of it, which is formed by pairwise intersecting subsets contains a common element. A graph G is cliqueHelly when the family of its (maximal) cliques is Helly, while G is hereditary clique-Helly when every induced subgraph of it is clique-Helly. The best algorithms currently known to recognize clique-Helly and hereditary clique-Helly gra...
متن کاملThe clique operator on circular-arc graphs
A circular-arc graph G is the intersection graph of a collection of arcs on the circle and such a collection is called a model of G. Say that the model is proper when no arc of the collection contains another one, it is Helly when the arcs satisfy the Helly Property, while the model is proper Helly when it is simultaneously proper and Helly. A graph admitting a Helly (resp. proper Helly) model ...
متن کاملOn hereditary clique-Helly self-clique graphs
A graph is clique-Helly if any family of mutually intersecting (maximal) cliques has non-empty intersection, and it is hereditary clique-Helly (abbreviated HCH) if its induced subgraphs are clique-Helly. The clique graph of a graph G is the intersection graph of its cliques, and G is self-clique if it is connected and isomorphic to its clique graph. We show that every HCH graph is an induced su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004